
C
O

M
PU

T
ER

SC
IEN

C
E

D
EPA

R
T

M
EN

T
•

A
D

A
PT-LA

B

Portable and modular
exceptions in Neverlang2

Andrea Francesco Iuorio

Id. Number: 774151

Università degli Studi di Milano
BSc in Computer Science

Advisor: Prof. Walter Cazzola

UNIVERSITÀ DEGLI STUDI DI MILANO
Computer Science Department

ADAPT-Lab

Dipartimento di Scienze e Tecnologie
Academic Year 2013/2014

Contents

1 Neverlang2 and exceptions 1
1.1 Introduction . 1

1.2 Introduction to Neverlang2 . 2

1.3 Introduction to exceptions . 3

2 Neverlang2 Exception Library 7
2.1 NERL - Neverlang2 Exception Runtime Library 8

2.1.1 NERL architecture . 8

2.1.2 NERL intermediate language . 9

2.1.3 NERL algorithm . 9

2.2 NECG - Neverlang2 Exception Code Generation 10

2.2.1 NECG architecture . 10

3 Neverlang2 Exception Library - JVM implementation 13
3.1 NERL implementation . 13

3.1.1 NERL data structure . 14

3.1.2 NERL Stack implementation . 15

3.1.3 NERL intermediate language implementation 16

3.1.4 NERL handler policy . 16

3.2 NECG implementation . 17

3.2.1 Handler block . 17

3.2.2 Protected block . 17

4 Case study: PanzyLang 19
4.1 Base language . 19

4.2 Try-Catch-Throw language . 20

4.2.1 Throw module . 20

4.2.2 Try-Catch module . 21

4.3 Try-Catch-Throw-Retry language . 22

5 Results and conclusions 25
5.1 Performance analysis . 25

5.2 Future improvement . 28

5.3 Conclusions . 28

i

1
Neverlang2 and exceptions

1.1 Introduction

Compilers and interpreters are one of the first types of software ever researched because
the possibility to comunicate with a machine using a more human-like language made
application development easier. We can trace the origin of compilers in a period where
software engineering didn’t exist: compilers’ structure was often monolithic, with fixed
formal grammars and development techniques that impeded to easily make changes to
a language. The modern compilers aren’t so different from their predecessors because
languages are something static, with improvements in the arc of years or even decades.
However, many languages have common features and syntaxes, but, because of the
compiler’s structure, developers often must rewrite the same feature for every language:
this makes languages’ development complex and expensive.

Today is useful having languages that can rapidly evolve and change. More and
more people have the necessity to comunicate with a computer, and these people aren’t
computer experts: they need a way to utilise a computer for their work without learning
something as complex as a general-purpose programming language. This leads to the
creation of special languages, called Domain Specific Language (DSL), that can be easily
used by an expert in one domain for doing their work on a computer. The creation of
DSLs requires a more open approach in the creation of the language, since this kind
of languages must be able to quickly evolve in order to meet the needs of the domain
experts[3].

A language can be defined by a formal grammar. This grammar contains a set
of productive rules[1]. This set can be partitioned, separating for example the rules
for conditional jumps from the rules for loops. A programming language so can be
intuitively represented as a set of little blocks, each one implementing a specific feature
of the language. The language can be seen as the union of independent features[6].

1

1 Neverlang2 and exceptions

Neverlang2 is a tool created by AdaptLab in order to make DSLs development
simple and modular. It concentrates on the creation of little parts of the language
representing a feature instead of complete languages: Neverlang2 views a language
as a set of blocks, called modules, each one representing a specific feature. Since we
are creating features instead of monolithic languages, these are independent from one
another and the language can be created modularly, adding and removing modules[7].
One intuitive example of our approach can be seen in conditional jumps: in many
languages this feature is implemented as a code block preceded by an if keyword. The
monolithic structure of the compilers often prevents to reuse the code that implements
the conditional jumps from one compiler into another, even if their syntax and semantic
are the same. In Neverlang2 the if feature is a module that can be reused into another
language. However, there are features that are difficult to separate from the rest of the
language, or features that require the knowledge of the rest of the language for their
implementation. This is a problem for the modularity Neverlang2 try to proposes. One
good example of a feature that depends from the rest of the language and the execution
environment is exception handling, since its relative module depends from the rest of
that language. An exception can be triggered at any moment: the entire language must
understand them.

This thesis’ objective was the creation of an exception handling mechanism which
is both architecture-independent and language-independent, permitting Neverlang2

to allows the reuse of modules that implements exceptions. In order to accomplish
this goal we have defined and implemented two software: a code generation library
for Neverlang2 and a runtime library. The code generation library is what permits
the language independence of this solution: Neverlang2 modules use this library,
and they can be reused in other languages. The runtime layer is what permits the
architecture independence: the language use this layer for exception handling instead
of the mechanism offered from the target host. For the sake of testing the validity of
our project we implemented these two libraries for the Java Virtual Machine. We also
created a compiler for an object-oriented language targeting the Java Virtual Machine
that uses both the code generation library and the runtime library for implementing
different types of exceptions, showing the power of our solution.

1.2 Introduction to Neverlang2

Neverlang2 is a framework created to make DSLs development easy and modular.
The core principle of Neverlang2, as we told earlier, is to move the focus on what
define a language: instead of seeing a language as a fixed formal grammar, Neverlang2

sees it as a set of blocks, each one representing a precise feature of the language. For
example, a c-like language could be seen as a set containing an if component which
implements conditional jumps, a while component that implements loops and so on. The
advantage of this representation is clear: many languages possess common features,
and Neverlang2 permits to reuse features written for one language into others[6].
Besides, extending a language is very easy: all we have to do is to add the module in

2

1.3 Introduction to exceptions

the language set.
A language feature is implemented in Neverlang2 as a module, which is composed by

two different lists: a list of production rules and a list of semantic actions. A module
represents the nodes of the Abstract Syntax Tree (AST)[1] that implements the feature.
Neverlang2 therefore creates the AST joining all the nodes represented by the modules
using their syntax rules. For example, this could be a module which implements an if
conditional jump:

module IfStatement{
reference syntax{

Statement � "if" "(" BoolExp ")" Statement;
Statement � "if" "(" BoolExp ")" Statement "else" Statement;

}

role(evaluation){
0@{

eval $1;
if($1.value == true)

eval $2;
}.
3@{

eval $4;
if($4.value == true)

eval $5;
else

eval $6;
}.

}
}

role(syntax) represents the production rules used by Neverlang2 to parse the input,
while role(evaluation) possess an action for every rule and represents the semantic action
the compiler must execute when it passes into that node. We can notice that this
module doesn’t make any assumption about the language: a developer can reuse this
module into another language for implementing this kind of if conditional jumps.

Neverlang2 views a language as a set of modules. This is implemented by a simple
file, the Language Descriptor[7], in which there is a list of the modules that compose
the language: this way, a developer can easily add a new feature in the language by
inserting the new module in the Language Descriptor.

1.3 Introduction to exceptions

Exceptions are anomalies that occur during the execution that require to be treated in a
special way, often separated from the application’s execution flow[2]. Historically, we
can define two types of exceptions: hardware exceptions when the event is physical, like
a processor fault, and software exception when the event occurs during the execution of
particular instructions that could ruin the computation. A classic example of software

3

1 Neverlang2 and exceptions

exception can be seen in the following code:

int a;
read a;
int b = 10/a

This code has a problem when the variable a is equal to zero, because the processor
would execute a division by zero, which is an undefined operation. This is a problem for
the computation and this special case must be handled correctly. This event should also
be handled separated from the program in order to prevent any possible modification
or contamination of the program’s execution flow. With exception handling we intend
the mechanism that permits to stop the application’s execution, handles the event
in an isolate way and, if possible, continues the execution of the application as if it
wasn’t never interrupted. Languages and hardware architectures handle exceptions in
different ways but we can see three common principles:

– Protected code: Protected code is a special area of the program where the exception
mechanism should be ready to operate if necessary. An exception can be risen at
any moment during execution but it may be a good idea for debugging purpose
to have well defined areas of code that can raise an exception. For example in
programming language like Java or C++ the protected code are statement blocks
preceded by the try keyword.

– Handler code: Handler code defines the code that must be executed for handling
an exception. Sometimes they are implicit in the language runtime or in the
operating system but many languages allow the programmer to define handlers
for specific exceptions. For example, in the Java programming language handlers
can be defined by a statement block preceded by the catch keyword.

– Throw code: Throw code represents the special event and ask the exception
mechanism to handle the problem in the correct way. This is the code that raises
the signal we called exception. Many languages use the throw keyword for raising
an exception.

Throwing an exception is a complex operation for the machine because it has to
interrupt the execution flow, execute the correct handler separately from the rest of the
application and, if possibile, return to the normal flow as if the exception wasn’t raised.
We can describe the throwing of an exception as a three-point process:

– Exception rising: an exception is raised by the throw code. The system has to stop
the application in a way that can be resumed, identify the exception threw and
choose the correct handler to handle it.

– Exception carrying: the exception has to travel across the system and arrive to the
correct handler without touching the program to prevent any contamination. This
is the major issue for our modularity: even if a feature isn’t directly interested in
managing exceptions we must be able to revert its actions or travels in it at any
moment.

– Exception handling: the correct handler is executed and the system returns to the
normal execution flow if possibile.

4

1.3 Introduction to exceptions

We can see an exception handler as a routine that must intercept every exception
launched, chooses and calls the correct handler in an isolated way and possibly resumes
the program. As one can imagine, all this operations require some sort of hardware
support. Also, every language implements this procedure in its own way. This
could make the creation of some type of exception handling mechanism on some
architecture difficult or even impossibile. For example, the Java Virtual Machine
exception mechanism impedes to resume the execution flow in the instant after the
exception rising: instead it only permit to restart the execution after the protected
code[5]. Besides, since an exception can be raised at any moment, the entire language
has to know about it, making impossibile to maintain the modularity Neverlang2

promises. The goal of this thesis is the creation of an abstract layer that permits to
implement any type of exception handling on any architecture. This way a Neverlang2

module that implements an exception system can be really portable and independent
from the rest of the language and the hardware.

5

2
Neverlang2 Exception Library

Neverlang2 is a framework for language development that wants to change how a
language is defined: not a fixed formal grammar but instead as a set of independent
features. However, some features are difficult to create independently from the others
already present in the language. Exception handling is a good example of this behaviour:
an exception can be raised at any moment, so we need some sort of support from the
execution environment or the entire language, since the exception can travel in the
system before it’ll be handled and it can require to undo some semantic actions. We
want to develop a solution that permits the developers to see the exception handling as
an independent feature. The Neverlang2 Exception Library (NEL) is our solution to
this problem.

One solution to our problem is using some sort of runtime support: this way we
have a standard architecture, independent from the execution environment, that the
language can use for provide exception handling. However, we want that our solution
is compatible with every Neverlang2 module: we don’t want to change anything in
them for support our solution. To be really language-independent, we want a solution
in which we only need to add the "exception handling" module to a language to
adds exception support: this means we need some sort of support during compile-
time too. We have composed NEL as the union of two libraries: a code generation
library called Neverlang2 Exception Code Generation Library (NECG), and a runtime layer
called Neverlang2 Exception Runtime Library (NERL). Neverlang2 modules use NECG
in their semantic actions for generating commands for NERL. NERL is applied as
an intermediate layer between the application and the execution environment, and
intercepts these commands to catch and handle the exception.

We can also notice that the use of NECG isn’t required: the application can send
commands directly to NERL, allowing its use in interpreted languages. In this chapter
we show how NERL and NECG are defined.

7

2 Neverlang2 Exception Library

2.1 NERL - Neverlang2 Exception Runtime Library

The Neverlang2 Exception Runtime Library is the runtime support used by our solution.
We can think of NERL as an intermediate layer between the application and the
real execution environment: when a program needs to raise an exception, NERL
intercepts the call and handles it. This way the language’s exception handling can be
created without thinking about the rest of the language nor the other features of the
language must understand our exceptions. This also permits the creation of exception
mechanisms that would be normally impossible on a specific hardware architecture. In
this section we present an abstract representation of this layer and how it works.

2.1.1 NERL architecture

NERL internally is composed by three data structures: a call stack, an Exception Table
and a Secure Area.

In order to handle an exception we must have a way to control the machine’s state. In
a typical Von-Neumann architecture, this means we have to control its memory: if we
can do it, we can halt, save, restore or modify the state of the machine in any moment.
Since every machine handles memory in different ways, we needed a standard memory
layout. NERL internally sees the machine’s memory as a stack: every function in the
program is an element of this stack called stack frame, and the function actually in
execution is at the top of this stack. We can define the stack frame structure in this way:

struct NERLstackFrame{
int methodID;
void *symbolTable;

};

methodID is a simple identification number for that function. This is used by NERL for
discerning between functions during the exception carrying.
symbolTable is a data structure that maintain a copy of the variables of the function. This
is necessary for restoring the call stack after an exception.

It is important to notice that this stack may not be the machine’s real call stack. It
could be mapped on other data structures, depending on how the machine handle its
memory. The NERL stack is just a way we internally use for presenting to the developers
a standard memory layout. This also means that we can use it in architectures that
don’t present a stack memory or that don’t allow the modification of the stack pointer.
In order to simplify the context switch and to maintain the NERL stack coherence with
the machine’s memory, NERL should provide a read/write barrier for each memory
access. This isn’t however required since an implementation could directly use the
NERL stack as the application’s stack.

Other than the stack, there is another essential data structure in NERL: the Exception
Table. This is a look-up table containing pointers to handlers’ instructions. When
an application enters in the protected zone, it executes a procedure called Handler
Registration, which saves in the Exception Table where the handler for a specific type of
exception can be found. When NERL receive an exception, it calls the handler saved

8

2.1 NERL - Neverlang2 Exception Runtime Library

in the Exception Table for that specific type of exception. It’s important to notice that
with type of an exception we don’t mean a language’s type but just a descriptor of that
exception. An exception’s type in NERL can be everything that permits to understand
or discern the nature of the exception.

Finally, NERL possesses a Secure Area. This is a buffer of reserved memory where is
possible to save informations that should be maintained and quickly retrieved during
the handling of an exception. The throwing of an exception for NERL is just a signal
sent from the program, and is useful to have the possibility to exchange data from the
program to the handler.

2.1.2 NERL intermediate language

For maintaining as much modularity and independence as possible, NERL internally
uses a small intermediate language. An application sends these instructions to NERL
and our runtime library executes the exception. Putting this instructions inside the
program may seems problematic for the modularity we want to provide but, thanks
to Neverlang2, the AST nodes that generate these instructions can be easily added or
removed from the language.

The stack data structure hasn’t any special operations. We have the classic push and
pop operations for adding or removing stack frames. There also must be a way to
update the symbolTable data structure, which is implementation-defined.

The Exception Table has four instructions:
– initNERL initialises NERL and its data structures, requiring an handler policy

function. This handler policy is the heart of NERL: it’s a function executed
after the raising of an exception that should utilise the NERL data structures
to effectively call an handler. The ability to change the handler policy permits
to generate different exception handler mechanisms for different languages. A
NERL implementation can include a default handler policy.

– registerHandler starts the Handler Registration policy we described before. We
indicate where we can find the handler and the type of exception that must be
handled by it. With "type" of an exception, we don’t intend the concept of type
from a typical programming language, but a description that identifies the nature
of the exception.

– raiseException is the instruction that throws an exception. It requires a description
that represent the type of the exception thrown.

– deleteHandler removes the handler registered for a specific exception type, which
can be used for example when the program exits the protected code.

Lastly, the Secure Area has a read and a write instructions.

2.1.3 NERL algorithm

Now that we have explained the internal structure of NERL, we can show how an
exception is handled by our layer.

9

2 Neverlang2 Exception Library

– The application installs the handler policy function.
– The application enters in the protected area and executes registerHandler
– The application executes the raiseException command when an exception needs

to be raised.
– NERL executes the handler policy function, which uses the NERL internal data

structures for choosing which handler to use and how this handler should be
execute.

– The handler is executed and returns to NERL.
– NERL executes the second part of the handler policy and returns to the applica-

tion.
– When the application exits the secure area, executes deleteHandler.

We can notice that the real exception handler mechanism is the handler policy function:
the developer utilises the NERL data structures for deciding how the machine should
operate when an exception is raised.

2.2 NECG - Neverlang2 Exception Code Generation

NERL can be used by sending commands directly to it, making it perfect for an
interpreted language. However, Neverlang2 is also a compiler-making tool, so we must
include NERL instructions into the program’s instructions. In order to simplify this
process, NEL provides a code generation library called Neverlang2 Exception Code
Generation Library (NECG) for generating the NEL instructions during the compilation
of a program. A Neverlang2 module can use this library during the semantic phase.
This is a great advantage because we avoid to insert NERL-specific code in Neverlang2

modules: we can reuse these modules on every architecture and language.
NECG has a simple structure since most of the work is done by the runtime layer.

We analyse the internal structure of NECG and how the Neverlang2 modules should
utilise it.

2.2.1 NECG architecture

Since how NERL receives its instructions is implementation-defined, NECG abstract
structure is quite simple as it just has to add the instructions for sending these com-
mands during the AST evaluation. NECG views every code block, like an handler or
a protected area, as a "black box" object, ignoring the instructions in it. During the
semantic phase, for every block, NECG creates a box that represents it, receives the
native code from the Neverlang2 modules and adds all the instructions that are neces-
sary for using NERL, converting if necessary the statements used by the language to
instructions for sending NERL’s command. For example, in our implementation, at the
start of every protected area NECG adds the code for sending the handler registration
command to NERL. This way we can avoid to insert any specific NERL code in the

10

2.2 NECG - Neverlang2 Exception Code Generation

compiler’s code, permitting us to reuse the Neverlang2 modules in other languages
and architectures.

11

3
Neverlang2 Exception Library - JVM

implementation

In this chapter we present our implementation for the Java Virtual Machine of the Nev-
erlang2 Exception Library described previously. We selected the Java Virtual Machine
as the target of our implementation because it impedes the manual manipulation of the
call stack[5] and, regarding the exception handling, it forces the programmers to use its
internal structure. Implement NEL on the JVM without using any special features is a
good way for show the power of our solution.

This chapter is divided in two main sections, in which we analyse the implementation
of NERL and NECG respectively.

3.1 NERL implementation

The Neverlang2 Exception Runtime Layer is a runtime library that must be applied
to the native environment. For our implementation, we opted for a JVM package
called NERL that must be inserted into the JVM CLASSPATH variable[5]. This way our
application can easily access NERL data structures and commands.

NERL package is formed by 5 classes:

– $PLClassEX is used for the handler implementation. It’s an interface that must be
implemented by every JVM objects for catching the exception.

– ExceptionRuntime contains the implementation for NERL instructions, the Excep-
tion Table and the Secure Area. The application communicates directly with this
class for raising and handling an exception.

– StackTrace is the NERL call stack implementation. Since the stack was the critical
point regarding its implementation, we separate it from the rest of the NERL

13

3 Neverlang2 Exception Library - JVM implementation

implementation.
– MethodRuntime represents a NERL stack frame. NERL creates a MethodRuntime

for every method used by the application.
– SymbolTable is used as a gateway between the application and NERL for accessing

memory.

3.1.1 NERL data structure

package NERL;

import java.util.*;

public class ExceptionRuntime{

private static ExceptionRuntime ex;
private HashMap <String, Integer > handlersID;
private HashMap <String, $PLClassEX > handlersOB;

private Object secureArea;

private ExceptionRuntime()

public static ExceptionRuntime getInstance()

/*Code for NERL Intermediate Language*/
}

The core of NERL is implemented in the ExceptionRuntime class. It’s a singleton[4] class
containing the implementation of all the data structures and the NERL intermediate
instructions.

Since the Java Virtual Machine doesn’t permit unconditional jumps between dif-
ferent methods, we had to find a way for calling our handlers without knowing, at
compile-time, their position. In order to resolve this problem we associate an unique
identification number to every handler in the class even if they are associated with
different methods or protected block. Then, all the handlers’ code are united into a
single method called $handler. This is the implementation of $PLClassEX:

package NERL;

public interface $PLClassEX{

public void $handler(int id);

}

The $PLCLassEX interface requires this method so we can call it using the dynamic
binding without knowing its position during compile time. NERL receives the handler’s
identification number during the handler registration and saves it in the Exception
Table so that it can jump to the correct handler, ignoring the others. The Exception
Table is formed by two HashMap objects: one for maintaining the relation between
an exception type (identified by a String JVM object) and its handler and the other for
maintaining a copy of the object’s handler: this is necessary because when we call the
handler, we need the object for the dynamic binding.

Finally, the Secure Area is simply an Object field: this way the application can save
an object and transmit it to the handler.

14

3.1 NERL implementation

3.1.2 NERL Stack implementation

NERL stack is implemented in the StackTrace class and contains the stack frames
represented by the MethodRuntime class. Since the Java Virtual Machine doesn’t
permit to manually manipulate the call stack, this was the most difficult thing to
implement in our NERL implementation. StackTrace is a stack of MethodRuntime
objects, each one representing an object’s method. Its prototype is:

package NERL;

import java.util.*;

public class MethodRuntime{

public String methodSignature;
public HashMap<String,Object> scopes;

public MethodRuntime(String methodSig);

public void addVariable(Object o, String s);

public Object getVariable(String s);

}

methodSignature represents the JVM signature of the method[5], while scopes is the
hashmap representing the symbol table of the method. When the application needs
to access a variable, it doesn’t use the JVM stack but its MethodRuntime: in this way
NERL stack represents the memory of the machine. Since we are using NERL stack but
the machine is using its own stack, we need a way to reflect the changes between the
NERL call stack and JVM call stack, so that a change in the NERL stack can be reflected
on the real execution stack.

The push operation is a method call. When a method is called, the called function
puts its MethodRuntime object on the NERL stack during the prologue phase. However
we also want the ability to remove a method anytime, since we don’t know when
an exception is raised and how much we would have to travel back in the call stack.
Our solution is the creation of a call barrier. Every method, during the prologue, asks
NERL an unique identification number. Then, it saves this number in a variable called
$IDMETHOD and in a JVM local. Every time we call a function, we surround the call
with a little "barrier". When the called function returns, we check the MethodRuntime
at the head of the NERL stack and we get its $IDMETHOD. If it isn’t the same as the
caller method’s ID we have in the JVM local, the caller method quickly returns since
this means that the method was removed from the JVM stack. We call this type of
return a spurious return, because the returned value has no means: we have removed
the method from the call stack before its completion. Since the caller was called from
some other method, our return action will be intercepted by another call barrier and so
we effectively unwind the JVM stack. In this way, the removal of a MethodRuntime is
mapped on the JVM call stack.

15

3 Neverlang2 Exception Library - JVM implementation

3.1.3 NERL intermediate language implementation

The NERL intermediate language is implemented as a list of methods, one for every
instruction. This way the application can call the method for execute a specific NERL
command. This is a prototype of intermediate language methods:

package NERL;

public class ExceptionRuntime{

public void installHandler(String type, int id, $PLClassEX o);
public void removeHandler(String type);
public void raiseException(String type);

}

The implementation of every command is simple:
– initNERL doesn’t exist: since ExceptionRuntime is a singleton class, it’s auto-

matically instanced the first time it’s used. Our implementation only provides a
default handler policy.

– installHandler receives an handler with its ID in the $handler method and a
reference of the object in which they reside and adds all these information into
the ExceptionTable. removeHandler works in the same way, except it removes the
handler.

– raiseException contains the default handler policy: it receives the exception types
and, using the data in the Exception Table, manipulates the NERL stack in order
to modify the machine’s state, and calls the $handler method with the selected
handler’s identification number.

3.1.4 NERL handler policy

Our implementation of NERL provides a default handler policy. While this isn’t
required, we avoid to provide a way for selecting different handler policies in this
implementation for the sake of simplicity. This default policy is implemented as follows:

public void callException(String typeException){
for(MethodRuntime m : NERLStack){

if(m.getVariable("$TRY_METHOD") != null)
break;

StackTrace.getInstance().popMethod();
}

Integer i = handlersID.get(nameException);
$PLClassEX o = handlersOB.get(nameException);
o.handler(i.intValue());

StackTrace.getInstance().popMethod();
}

This works like the handler policy used by the Java programming language: we unwind
the call stack until we have reached a try block, then we select the handler from the
Exception table and execute it. After that, we remove the try block from the call stack

16

3.2 NECG implementation

so that the computation will be resumed after the try block.

3.2 NECG implementation

As we saw, NERL sometimes requires to add some instructions in the bytecode gener-
ated for the program. We have to use NECG for adding this bytecode while avoiding
to generate it in the Neverlang2 modules. In our implementation, NECG is a simple
JVM package used by the compiler. It contains:

– ExceptionSupport, which represents the center of NECG. It handles all the other
data structures in the package for generating the final bytecode.

– ExSecureCode is the class representing a protected block. When the compiler finds
a protected block, it creates an ExSecureCode object. Internally, ExSecureCode
adds all the bytecode necessary for the Handler Registration procedure.

– ExHandlerCode is the class representing an handler. Internally it generates all the
instructions necessary to the $handler method.

– MemoryHandler is a simple collections of bytecode instructions for all the memory
operations necessary for NERL. It doesn’t execute any real work in our solution.

3.2.1 Handler block

ExHandlerCode represents an handler block and, starting from the bytecode that
represents the handler’s execution code, it generates all the necessary instructions for
using this specific handler in the $handler method. Every handler used in the class must
be inserted in the $handler method, so we needed a way to jump to the correct handler.
Our solution takes the form of a simple tableswitch instruction[5]: every handler has its
own number and this number is saved in the NERL Exception Table during the handler
registration. With this procedure we can retrive a specific handler without problems.

3.2.2 Protected block

ExSecureCode represents a protected block. It needs to receive all the ExHandlerCode
objects representing the handlers associated with the protected area in order to inter-
nally generate the handler registration and handler deletion bytecode. It also generate
the method that represent our protected code block. Then, using these informations,
the compiler can generate a separate method for the protected block and the correct
calling instruction.

For the handler registration, ExSecureCode generates a string formed by "typeEx-
ception,ID", for every handler, with the id in the $handler method. Then, this string is
passed to NERL using the installHandler method. For example, the handler registration
in the bytecode for this simple block is:

17

3 Neverlang2 Exception Library - JVM implementation

try{
//Try code

}
catch(Integer i){

//Handler code
}
catch(Exception e){

//Handler code
}

invokestatic NERL/ExceptionRuntime/getInstance()LNERL/ExceptionRuntime;
ldc "Integer,2,Exception,3"
aload 0
invokevirtual NERL/ExceptionRuntime/installHandlerList

(Ljava/lang/String;LNERL/$PLClassEX;)V

Ultimately, ExceptionSupport is a class that contains all the ExSecureCode generated
during compilation and also generates all the necessary bytecode for using the protected
block methods and the general handler method. All this bytecode is appended to the
class the compiler is evaluating.

18

4
Case study: PanzyLang

PanzyLang is an object-oriented, compiled language we have developed using Never-
lang2 to show the potentiality of our exception library. It’s implemented by a compiler
that generates JVM mnemonic bytecode. This bytecode is then converted in native JVM
classes using Jasmin (http://jasmin.sourceforge.net) as bytecode assembler.

We created three versions of this language: a base version and two versions extending
it, adding the support for different types of exceptions. We added to the base language
a try-throw-catch exception policy similar to the one used by the Java programming
language [5] and then we extended it with the retry keyword. We chose these versions
for show that our solution permits us to add the support for exceptions upon a
language that doesn’t support them. In this chapter we present how our language and
its extensions are implemented.

4.1 Base language

The base language is a Java-like programming language. We don’t spend too much
time describing its features but instead we only present a list of them.
PanzyLang supports:

– integer, double floating point, string and reference types.
– integer and double floating point arithmetics
– boolean operators
– if-else conditional jumps
– while loops
– functions
– classes

19

4 Case study: PanzyLang

– new keyword for creating objects
– cast between objects

Each one of these features is implemented in a single Neverlang2 module that can be
removed or reused in other languages.

4.2 Try-Catch-Throw language

Starting from the base language, we added the support to exceptions with just two
Neverlang2 modules, one for the throw statement and one for the try-catch statement
blocks.

4.2.1 Throw module

module panzyLang.Ex.Throw{
imports{base.*;NECG.*;}

reference syntax {
Statement � "throw" Expr ;

}
role(evaluation) {
0@{

MethodInformation m = CodeUtility.currentMethod;
String buffer = m.generateQuickReturn();
int numArg = m.getNumArgs();
ExprInformation i = $1.ExprInfo;

$0.Text =
(String)$1.Text +
i.convertToObject +
PanzyLangMain.exSupport.throwExceptionCode(i.javaSigType)+
PanzyLang.exSupport.getCallBarrierBytecode(buffer, numArg);

}.
}

}

Our throw syntax is a statement with the keyword throw and an expression. This
expression is the object, eventually converted, that will be saved in the NERL’s Secure
Area and represents the arguments that will be passed to the selected handler. The
throw semantic node obtains the expression’s bytecode and its type, convert it to an
object for saving it in the NERL Secure Area and generates the bytecode for the throw
instruction. The throw instruction is a method call to the raiseException method in
NERL. Finally we surround our call with a call barrier for the stack manipulation.

20

4.2 Try-Catch-Throw language

4.2.2 Try-Catch module

module panzyLang.Ex.TryCatchJava{
imports{base.*; java.util.*; NECG.*;}

reference syntax {
Statement � "try" "{" StatementList "}" CatchList;
CatchStatement � CatchOpen "{" StatementList "}" ;
CatchOpen � "catch" "(" Type Identifier ")" ;
//CatchList rules

}
role(evaluation) {
0.{

ExSecureCode ex = new ExSecureCode(PanzyLangMain.exSupport);
MethodInformation back = CodeUtility.currentMethod;
CodeUtility.currentMethod = new MethodInformation

(ex.returnTrySignature(),"V",false);

eval $1;
eval $2;

for(ExHandlerCode h: $2.catchList)
ex.newHandler(h);

String invocationCode;
MethodInformation currentMethod = CodeUtility.currentMethod;
String t = ex.createTryCode((String)$1.Text);
currentMethod.appendMethodCode(t);
invocationCode = currentMethod.getInvocationCode(back);
tryMethodList += currentmethod.getSourceCode();
CodeUtility.currentMethod = back;

$0.Text = invocationCode();
}.
3@{

ExHandlerCode ex = $4.handlerObj;
ex.appendSourceCode((String)$5.Text);
$3.handlerObj = ex;

}.
6@{

ExprInformation t = $7.ExprInfo;
$6.handlerObj = new ExHandlerCode

(t.javaSigType,(String)$8.idText);
}.
//Catch list implementation
}

}

The catch block is a StatementList, the list of statements in our code block, and,
thanks to our code generation library, we can avoid all the problems for handling the
catches’ different natures and types. For every catch block, we generate a specific
ExHandlerCode object, evaluate its StatementList and then we put the code we have
generated in the ExHandlerCode object. The CatchList generates an ArrayList of all the

21

4 Case study: PanzyLang

ExHandlerCode.
The try implementation is more complex: we consider it a new JVM method so

we have to stop the evaluation of the actual method, create a new method and then
evaluate its StatementList and CatchList. We obtain the bytecode of the try block
and the ExHandlerCode objects associated to it. Using this list, NECG automatically
generates the handler registration bytecode and puts it in the prologue of our newly
generate method. Then our module restores the previously evaluated method so that
the rest of the compiler can continue its evaluation. Finally our module return to the
compiler a call instruction to our try method. For the rest of the language this was just
a simple evaluation that generate a method call instruction.

As we can see, NECG handles almost everything about the bytecode generation so
that we don’t have to put any specific instructions in our Neverlang2 modules. When
we change the execution machine, we’ll find a specific NECG for generating the new
machine’s assembly necessary for the NERL intermediate language and then we can
reuse these Neverlang2 modules.

4.3 Try-Catch-Throw-Retry language

module panzyLang.Ex.Retry{
imports{base.*;NECG.*;}

reference syntax {
Statement � "retry" ;

}
role(evaluation) {
0@{

MethodInformation m = CodeUtility.currentMethod;
String buffer = m.generateQuickReturn() ;
int numArg = m.getNumArgs();

$0.Text =
PanzyLangMain.exSupport.retryCode()+
PanzyLang.exSupport.getCallBarrierBytecode(buffer, numArg)+

}.
}

}

Our third version adds the the retry keyword upon the precedent version. We decided
to add this keyword for two main reasons: the first one is to prove that NEL permits us
to write exception handling procedures unsupported by the execution machine since
the JVM doesn’t support natively this keyword. The second reason is to show that
our exception modules are modular too since we can add or remove features to it just
like every other part of the language. In our implementation, when the keyword retry
is encountered in a catch block, we return the execution at the start of the try block,
repeating it.

Implementing our retry is simple thanks to NERL. All we have to do is to unwind
the call stack until we find our try method, pop it and then recall it. This way we delete

22

4.3 Try-Catch-Throw-Retry language

all the previous computation and we return at the start of the try block, effectively
retrying it.

23

5
Results and conclusions

The Neverlang2 Exception Library gives the possibility to add the support for exceptions
into language lacking this feature but, since it uses an intermediate layer between the
application and the real hardware, our solution can present an overhead in terms of
execution time compared to a native application. For better understanding the impact
NEL has on performances, we have developed the small language we presented in the
previous chapter, PanzyLang. In this chapter we analyse the drawbacks of using our
library and we discuss about improvements that our solution can see in the future for
mitigate the problems we had found.

Calculating the differences in compilation time or generated code size is useless in
our case study: PanzyLang is a toy language and, since NERL can be used without
NECG, we don’ t find this kind of data to be significative. We limited ourself to study
the differences in execution time between an application written in PanzyLang that use
NERL and an application in one other native programming language. We obviously
expect that the native solution is faster but with this experiment we want to quantify
the decrease of performance and see if it’s justifiable by the modularity of our solution.

5.1 Performance analysis

Calculating execution time for exceptions is difficult. We want to understand how
quickly an application can locate and execute an handler after the exception is raised and
how quickly the application can resume its normal execution flow after the execution
of the handler. This isn’t enough however: as we saw in Chapter 3, our implementation
of NERL introduces a write barrier in every memory access. We chose to compare the
try-throw-catch PanzyLang version with the Java 1.8 programming language: both the
languages have similar syntax, compile in native bytecode and use the same procedure
for exception handling.

25

5 Results and conclusions

We need an application, written in both languages, to use as a benchmark. However,
this application needed to meet some specific criteria:

– The application should make a lot of method calls in the try block. This is
important because we want to understand how the stack traversal of our exception
impacts on the execution time after the exception is raised.

– The application should execute a lightweight handler: we must execute an handle
for understanding how quickly the application can resume its normal execution,
however we don’ t want to spend too much time in it since we want to see how
the handling mechanisms performs, not the single handler.

– The application should frequently access memory without allocating it: NERL’s
write barriers are the major concern about performance and we want to under-
stand how they impact on it. At the same time, we don’t want to trigger any
garbage collection, so we must avoid allocating objects during execution.

We developed a little application that calculates the factorial of a number using the re-
cursive algorithm. However, we have removed the base step, so we trigger an exception
when we try to multiply by zero. This causes the execution of an handler that updates
a counter and repeats the procedure. This application meets all of our criteria: the
recursive nature of our factorial function permits us to fill up the stack, the handler is
lightweight and does both a read and a write access to an integer variable, so that we can
study how our barriers impact on performance. We put the try block in a while block
for repeating the same passages, so that out x variable represents the number of iteration.

public class Benchmark{

public static int fact(int i){
if(i==0)

throw new RuntimeException();
else

return i * fact(i-1);
}

public static void main(String args[]){
int a = 0;
int i = 0;
int x = //Read from stdin;
while(i<x){

try{
a = fact(i);

}
catch (RuntimeException f){

a = a +1;
}
i= i + 1;

}
}

}

26

5.1 Performance analysis

class BenchmarkPL{

int fact(int i){
if(i < 1) {

throw new FactException()
}
return i * fact(i-1)

}

void main(){
int a = 0
int i = 0
int x = //Read from stdin
while(i < x){

try{
a = fact(i)

}
catch(FactException f){

a = a + 1
}
i = i +1

}
}

}

In the following table we presents the results we had gathered. All the results are in
milliseconds on the Oracle JRE 1.8.25.

x value Java Stack
unwind

PL Stack
unwind

Java
memory
access

PL
memory
access

Java
entire
application

PL
entire
application

1 0,018 0,043 0,002 0,03 125 138
50 0,44 1,28 0,011 0,67 138 153
100 1,06 2,78 0,028 1,15 143 168
250 8,38 11,03 0,045 1,80 144 217
500 22,01 27,15 0,065 2,74 148 360
700 47,75 39,15 0,104 3,39 186 653

The results are interesting: as expected NERL introduces some overhead during stack
traversal and memory access. However the native exception handler procedure is
extremely slow with a large call stack. This is probably because it’s optimised for a
little call stack and because the JVM exception policy always generates a stack trace
when an exception is raised.

As expected NERL’s real problem can be found during memory access. Our NERL
implementation needs to place a barrier between every memory access because it needs
to know the current state of the machine, since we don’t know when an exception is
raised. We registered a 30 times increment compared to the native application during
memory access. Obviously there are differences between how the Java compiler and
the PL compiler optimise the bytecode for this application, and this kind of results
aren’t unexpected since we knew that handling the memory is the most critical part of

27

5 Results and conclusions

our project performance-wise. In the next sections we present some strategies that can
drastically improve the performance of our memory manager.

Because of the overhead during memory accesses, the entire PanzyLang application
is almost 3 times slower than the native application. This might be seen as an excessive
degradation, however our benchmarks was purposely designed for underlying a worst-
case scenario. Because of that, we think our solution is good enough for little languages
that greatly benefit from a quick development cycle, like DSLs.

5.2 Future improvement

NEL is already in an usable state: with it, we developed a small language in which
we can add exceptions support to a language modularly and independently from the
rest of it. However there are some performance degradation and there is a lot of room
for improvements. In this section we present some possibile improvements to our
implementation that should make NEL a viable solution for real-world languages and
DSLs.

NERL possesses a single, central call stack and can’t work in a multithread envi-
ronment. NERL doesn’t support the concept of threads in its current form and NEL
doesn’t have any way to coordinate the accesses from different threads. A good idea
could be utilising a separate stack for each thread the application possess but this can
be a limitation for certain exception procedures.

Another area that should needs heavy improvements is memory management: since
NERL must handle the memory used by the application, in our solution we put a
barrier before every memory access, introducing a significative overhead to an already
slow operation. An interesting improvement could be the creation of a hierarchical
system with a cache for reducing the number of memory barrier operations, condensing
NERL internal updates and therefore reducing the overall overhead of our layer.

Another interesting improvement could be updating the NERL stack concurrently:
in this way we can probably further improve the memory barriers efficiency.

Finally, we can improve our architecture for improving the support to more complex
exception handling algorithms. NEL permits to write an exception handler policy as
we saw in Chapter 2, however it provides only basic methods for controlling the call
stack and the machine’s state.

5.3 Conclusions

At the start of this thesis we wanted to find a way for seeing the exception handling
as an independent feature in order to being used in Neverland2. We have presented
our solution in the form of an exception handling library to better abstract this feature
and make it independent from both the language and the execution hardware. We
implemented our library on the Java Virtual Machine, created a small object-oriented
language lacking exceptions and we finally developed, using our NEL library, a set of
modules that extend our language with two different types of exception. The results

28

5.3 Conclusions

demonstrate that we have created a solution with a great extensibility but we need
more tests and different languages for understanding if NEL can be considered a good
solution for every type of language. Also, while it is in a usable state right now, our
library needs some improvements before it can be used in the creation of real-world
languages and DSLs, like the supports for multithreading. However, with this thesis we
have showed that we can write an exception handling mechanism independent from
the rest of the language, making the exception handling an independent and portable
feature.

29

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools, First Edition. Pearson Education, 1986.

[2] John B. Goodenough. Exception handling: issues and a proposed notation. Communica-
tions of the ACM Volume 18, December 1975

[3] Marjan Mernik, Jan Heering, Anthony M. Sloane. When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR) Volume 37, December 2005

[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994

[5] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley. The Java Virtual Machine
Specification, Java SE 7 Edition. Oracle, 2013

[6] Cazzola Walter. Domain-Specific Languages in Few Steps: The Neverlang Approach.
SC12, June 2012

[7] Cazzola Walter, Vacchi Edoardo. Neverlang2: Componentised Language Development
for the JVM. SC13, June 2013

31

	1 Neverlang2 and exceptions
	1.1 Introduction
	1.2 Introduction to Neverlang2
	1.3 Introduction to exceptions

	2 Neverlang2 Exception Library
	2.1 NERL - Neverlang2 Exception Runtime Library
	2.1.1 NERL architecture
	2.1.2 NERL intermediate language
	2.1.3 NERL algorithm

	2.2 NECG - Neverlang2 Exception Code Generation
	2.2.1 NECG architecture

	3 Neverlang2 Exception Library - JVM implementation
	3.1 NERL implementation
	3.1.1 NERL data structure
	3.1.2 NERL Stack implementation
	3.1.3 NERL intermediate language implementation
	3.1.4 NERL handler policy

	3.2 NECG implementation
	3.2.1 Handler block
	3.2.2 Protected block

	4 Case study: PanzyLang
	4.1 Base language
	4.2 Try-Catch-Throw language
	4.2.1 Throw module
	4.2.2 Try-Catch module

	4.3 Try-Catch-Throw-Retry language

	5 Results and conclusions
	5.1 Performance analysis
	5.2 Future improvement
	5.3 Conclusions

