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Chapter 1

Introduction and problem

description

Modern computer systems have the necessity to track the identities of the users re-

questing their services because identity is an important parameter in access control

decisions. A system then has the need to authenticate users. We define as authen-

tication the process of verifying the identity of an user. A common solution to this

problem is to use a secret, an information known only to the legitimate user. By

providing the secret the user can prove their identity. The secure handling and usage

of secrets are an important aspect in computer security because anyone possessing

the secret information can be identified as the legitimate user.

One of the most commonly used secrets are passwords. Passwords or passphrases

are strings of text, a sequence of characters, known only to a specific user. Passwords

can be used as secrets because if the user can prove to know the password they

can prove their identity. Proving the knowledge of a password is trivial: the user

only needs to provide it to the system, usually writing it with a keyboard. Since

1
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they are extremely easy to use and implement they are one of the most used way to

authenticate users even if they presents some problems from a security standpoint:

users often reuse passwords on different systems and these passwords are short and

presents low entropy [1].

Encryption algorithms encode an information in such a way that it can only

be read by authorized people [2]. For doing so, the algorithm use a secret called

cryptographic key. The key specify the transformation of plaintext into ciphertext

and vice versa, so only using the correct key one can retrieve the original information.

This cryptographic key is often implemented as a fixed-length sequence of bits. This

presents several usability problems for an human user: these bit sequences are often

quite long and they can be difficult to remember or provide in some context like on

mobile devices. Both passwords and cryptographic keys are secrets but passwords

are much easier to use than cryptographic keys. Is it possible to use a password

as a cryptographic key? Passwords are character sequences, cryptographic keys are

bit sequences: this means that it is necessary to use an algorithm that converts a

password into a cryptographic key. This algorithm is called Key Derivation Function

(KDF).

A Key Derivation Function is an algorithm that converts a password into a se-

cure cryptographic key. Kerckhoffs’s principle says that the security offered by a

cryptographic algorithm depends only by the security of the cryptographic key itself.

Because of this principle it is not enough to do a simple encoding of the password

characters in bit: the conversion should generate the strongest possible key. KDF

algorithms must presents 3 important proprieties:

• Given a password X, compute KDF (X) should be ”fast enough” for a legiti-

mate users.
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• Compute KDF (X) should be as slow as possible without contradict the first

point.

• Given Y = KDF (X), there must be no significantly faster way to test q pass-

word candidates X1, X2, ..., Xq than by actually computing KDF (Xi) for each

Xi.

If an algorithm respects these 3 proprieties, it can generate strong keys even when it

uses a short and low-entropy password as input: for finding which password generates

that key it is necessary to execute a brute force attack because of Propriety 3 but

for Propriety 2 the computation of each single password candidate is slow, making

the entire attack unpractical. Propriety 1 however means that, if a user knows the

password, the computation of the key should be fast: the algorithm should not present

a disadvantage to a legitimate user.

In 2000, RSA Laboratories defined in RFC 2898 [3] the Password Based Key

Derivation v2 (PBKDF2). Today PBKDF2 is the most widespread KDF: it is used

in WiFi Protected Access (WPA/WPA2), full disk encryption on iOS, macOS (Fil-

evault) and Linux (LUKS) and by several applications like password managers. It

is also worth noting that some applications, like Apacha Spark, uses PBKDF2 for

client/server authentication. RFC 8018 [4], published in 2017, still recommends

PBKDF2 for password hashing. NIST also released in 2017 a new standard for

password authentication and storage that uses PBKDF2 [5].

PBKDF2 uses a pseudo-random function (PRF) for generate the output key.

While it is possible to use any PRF, the standard suggests to use HMAC-SHA1 [6] as

the PRF. Implementations that uses HMAC-SHA256 as their PRF are also common.

For slowing down attackers, PBKDF2 uses a salt and an iteration count. The latter

specifies the number of times the pseudo-random function is iterated to generate a key
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of appropriate size. The iteration count is one of the most important parameters of

PBKDF2. The choice of a high value slows attackers down but may negatively affect

usability. In [7], NIST recommends a minimum of 1,000 iterations for general pur-

pose applications but suggests to select the iteration count value as large as possible.

Interestingly, many applications define such a value a priori — for example, WPA2

set the iteration count value to 4096 [8] — while others do not — e.g., the iteration

count associated to iOS passcodes is calibrated to take about 80 milliseconds [9].

Since Key Derivation Functions transform user-provided passwords into secure keys,

a great number of software and protocols uses PBKDF2 for authentication and key

generation: as an example, Figure 1 shows how a Linux Unified Key Setup archive is

decrypted using the password provided by the user.

Figure 1: Linux Unified Key Setup verification flowchart

PBKDF2 is designed in such a way that the computation of the key cannot be done

in parallel in an effort to reduce the amount of time for generate a key. However, in the

recent years, thanks to the growing popularity of cryptocurrencies and the growing

video-game industry, the market was flooded by cheap hardware architectures that
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are able to execute several instances of PBKDF2 at the same time. An example

of these architectures is presented by Graphic Processing Units (GPUs). GPUs are

heavily specialized chips for image computation but, thanks to their programmable

pipeline, in the last few years they became a cheap way to execute general-purpose

parallel computations. Because of the low-memory requirements of PBKDF2, GPUs

can execute a lot of instances of this KDF at the same time. Using a GPU, an attacker

can accelerate by a lot the execution of PBKDF2 at a reasonable low cost.

In this thesis we focus on accelerating PBKDF2-HMAC-SHA1 on CPU and GPU

architectures. While this is not something new, we wanted to concentrate on these

novel issues:

• How much can we accelerate a PBKDF2 implementation? What can be learned

while developing an highly optimized implementation from scratch?

• How much optimization techniques to the internal PRF can contribute to the

acceleration of PBKDF2?

• Which are the computational possibilities offered by current consumer-grade

hardware?

• For which kind of applications can we still consider PBKDF2-HMAC-SHA-1

secure?

We chose to focus on PBKDF2-HMAC-SHA1 because, despite there are some recent

security concerns about SHA-1 [10], this version represents the current standard ver-

sion of PBKDF2. In fact, even with these security concerns, HMAC-SHA1 is still

considered secure to use as a pseudorandom function. PBKDF2-HMAC-SHA1 is

used by several applications like full disk encryption softwares [11,12] and it is widely
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deployed as an authentication method, being used in systems like WiFi Protected

Access (WPA/WPA2) [8] and Apache Spark [13]. In addition, in the Internet of

Things (IoT) era users want to be able to access to their accounts on all their devices,

thus adopting password managers to remember and secure user-chosen passwords.

Notice that several password manager applications [14–18] are based on PBKDF2

and a number of security and privacy concerns have to be addressed [19,20].

For accelerating PBKDF2-HMAC-SHA-1 we first reviewed the current state of the

art, selecting several optimization techniques used to speed up PBKDF2, HMAC and

SHA-1 in a GPU/CPU context. We also tried and developed a couple of optimizations

for the SHA-1 algorithm ourselves, when it is used in PBKDF2. Then, in order to

measure the contributions provided by these optimizations, we developed from scratch

an highly optimized implementation of PBKDF2-HMAC-SHA-1. Finally, we used this

implementation to execute testing activities on consumer-grade hardware, trying to

understand the impact each optimization had on the acceleration process.

This thesis is organized as follows.

• In Chapter 2 we introduce the necessary cryptographic background.

• In Chapter 3 we introduce the necessary background on GPGPU programming.

• In Chapter 4, we described the optimizations techniques that can be used to

speed up PBKDF2, HMAC and SHA-1.

• In Chapter 5, we describe both our CPU and GPU implementations, the te-

chiniques we have used and the problems we encountered during the implemen-

tation.

• In Chapter 6, we show the experimental result found by our implementation.
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• Finally, in conclusions about our results and their implications for the security

of PBKDF-HMAC-SHA-1 are drown in Chapter 7.



Chapter 2

Cryptographic preliminaries

In this Chapter we provide the necessary cryptographic background for understanding

our testing activities. We start with a quick explanation of what a Key Derivation

Function is, then we present PBKDF2, the KDF we concentrate in this thesis. Finally

we explore the internal cryptographic primtives used by PBKDF2, more specifically

HMAC and SHA-1 hashing algorithms.

2.1 Introduction to Key Derivation Functions

A Key Derivation Function (KDF) is a function that, using some initial keying ma-

terial, it generates a secure cryptographic key, ie. an array of bits. In practice the

most used type of KDF are password-based Key Derivation Function, functions that

uses passwords as their keying material.

A password-based KDF generates a secure cryptographic key. Not all functions

that converts passwords into arrays of bits can be considered good KDF. A KDF

should satisfy 3 important proprieties to be considered secure. These three proprieties

are:

8
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• Given a password X, compute KDF (X) should be ”fast enough” for a legiti-

mate users

• Compute KDF (X) should be as slow as possible without contradict the first

point

• Given Y = KDF (X), there must be no significantly faster way to test q pass-

word candidates X1, X2, ..., Xq than by actually computing KDF (Xi) for each

Xi.

If the algorithm presents these proprieties, the generated key can be considered

secure enough even when using a low-entropy password as keying material. In our

threat model we assume that an attacker has the resulting key and they want to

understand which password was used for generating it. Propriety 1 means that the

execution of a single instance of the KDF should be fast: a legitimate user, which

knows the correct password, has to execute at most one time the KDF for the correct

conversion. However, because of propriety 2, executing several instances of the KDF

should be as slow as possible. The careful balance between these two times is often

a source of problems for implementers, as we will seen in the rest of this chapter.

Propriety 3 is what permits to the generated key to be considered secure. Because of

it, the attacker has to try all possible passwords, however because of propriety 2 this

will require a considerable amount of time, making the attack too slow and expensive

even if the pool of possible password is not big.

2.2 PBKDF2

PBKDF2 is a password-based key derivation function: starting from a password, the

algorithm generates a key of fixed length. PBKDF2 can be described as a chain of
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several instances of a pseudorandom function. In this paper we concentrate ourselves

on the version that uses HMAC-SHA-1 as the pseudorandom function: even if SHA-1

is currently considered unsafe when we want to avoid hash collisions, the NIST still

supports SHA-1 when used a key derivation function.

PBKDF2 is a Password-Based Key Derivation Function described in PKCS #5

[3, 21, 22], [7]. For providing better resistance against brute force attacks, PBKDF2

introduce CPU-intensive operations. These operations are based on an iterated pseu-

dorandom function (PRF) which maps input values to a derived key. The most

important properties to assure is that the iterated pseudorandom function is cycle

free. If this is not so, a malicious user can avoid the CPU-intensive operations and,

as described in [23], get the derived key by executing a set of functionally-equivalent

instructions.

PBKDF2 inputs a pseudorandom function PRF , the user password p, a random

salt s, an iteration count c, and the desired length len of the derived key. It outputs

a derived key DerKey.

DerKey = PBKDF2(PRF, p, s, c, len) (1)

More precisely, the derived key is computed as follows:

DerKey = T1||T2|| . . . ||Tlen, (2)

where

T1 = Function(p, s, c, 1),

T2 = Function(p, s, c, 2),

...

Tlen = Function(p, s, c, len).
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Each single block Ti — i.e., Ti = Function(p, s, c, i) — is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc, (3)

where

U1 = PRF (p, s||i),

U2 = PRF (p, U1),

...

Uc = PRF (p, Uc−1).

The PRF adopted can be a hash function [24], cipher, or HMAC [25], [26], and [6].

In the sequel, we will refer to HMAC as PRF.

2.3 HMAC

An Hash-based Message Authentication Code (HMAC) is an algorithm for computing

a message authentication code based on any iterated cryptographic hash function.

The definition of HMAC [6] requires

• H: a cryptographic hash function;

• K: the secret key;

• text: the message to be authenticated.

As described in RFC 2104 [6], an HMAC can be defined as follows:

HMAC = H(K ⊕ opad,H(K ⊕ ipad, text)) (4)
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where H is the chosen hash function, K is the secret key, and ipad, opad are con-

stant values — respectively, the byte 0x36 and 0x5C repeated 64 times. Recall that,

Equation 4 can be expanded in the form:

h = H(K ⊕ ipad || text)

HMAC = H(K ⊕ opad || h)

In our performance tests, the hash function adopted will be SHA-1, thus making

HMAC-SHA-1 the default pseudorandom function.

2.4 SHA-1

SHA-1 is a cryptographic hash function that inputs an arbitrarily long messageM and

outputs a 160-bit digest H. In order to provide the message digest, SHA-1 operates

eighty times on five 32-bit words A, B, C, D, and E as shown in Figure 2. Ft is defined

Figure 2: SHA-1
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by

Ft =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 = (B ∧ C) ∨ ((¬B) ∧D) t ∈ [0 . . . 19]

F1 = (B ⊕ C ⊕D) t ∈ [20 . . . 39]

F2 = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) t ∈ [40 . . . 59]

F3 = (B ⊕ C ⊕D) t ∈ [60 . . . 79]

and Kt assume four constants value (see [24] for details).

Notice that expressions F0 and F2 of Ft are logical equivalent to

F0 =

⎧⎪⎪⎨⎪⎪⎩
D ⊕ (B ∧ (C ⊕D))

(B ∧ C)⊕ ((¬B) ∧D)

F2 =

⎧⎪⎪⎨⎪⎪⎩
(B ∧ C) ∨ (D ∧ (B ∨ C))

(B ∧ C)⊕ (B ∧D)⊕ (C ∧D)

and that can be used instead of the expressions in [24].

Message M is processed in blocks of the size of 512 bits, namely, sixteen 32-bit

words W0, . . . ,W15, eventually padding the last block. More precisely, the last block

is padded with one bit 1 first then, zero or more bits 0 so that its length is congruent

to 448, modulo 512. The remaining 64 bits of the last 512-bit block represent the

message length L. The SHA-1 algorithm expands 32-bit words W0, . . . ,W15 into

eighty words using the follow message scheduling function:

Wi = ROTL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) i ∈ [16 . . . 79] (5)

where ROTL(x, n) is the left rotation of x by n bits. Notice that Equation 5 requires

to store eighty 32-bit words. If memory is limited (e.g. embedded devices and GPUs),
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an alternative method should be adopted. NIST suggests to regard W0, . . . ,W15 as a

circular queue [24] and substitute the Equation 5 with the following:

⎧⎪⎪⎨⎪⎪⎩
s = i ∧MASK i ∈ [16 . . . 79]

Ws = ROTL1(Ws ⊕W(s+2)∧MASK ⊕W(s+8)∧MASK ⊕W(s+13)∧MASK)

(6)

where MASK is set to the value 0x0F in Hex. Equation 6 requires only sixteen

words, thus saving sixty-four 32-bit words of storage.

Further improvements have been presented in [27]. In particular, the authors

suggest to replace Equation 5 with

W [i] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ROTL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) i ∈ [16 . . . 31]

ROTL2(Wi−6 ⊕Wi−16 ⊕Wi−28 ⊕Wi−32) i ∈ [32 . . . 63]

ROTL4(Wi−12 ⊕Wi−32 ⊕Wi−56 ⊕Wi−64) i ∈ [64 . . . 79]

(7)

and then replace W29, W30, W31, W60, and W62 with the following and less expensive

equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W29 = ROTL2(W23)⊕ k[29]

W30 = ROTL2(W24 ⊕ k[16])

W31 = ROTL2(W25 ⊕ k[17])⊕ k[31]

W60 = ROTL4(W48 ⊕W28 ⊕W0)

W62 = ROTL4(W50 ⊕W30 ⊕W0)

(8)

where k[29] = ROTL2(W5) ⊕ ROTL1(W15), k[16] = W0 ⊕ W2 (previously com-

puted in W16), k[17] = W1 ⊕W3 (previously computed in W17), and finally k[31] =

ROTL1(W15)⊕ROTL2(W15).
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In addition, [27] states that Equation 6 can be replaced with the unfolded version:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W16 = W 1
0 ⊕W 1

2 ⊕W 1
8 ⊕W 1

13

W17 = W 1
1 ⊕W 1

3 ⊕W 1
9 ⊕W 1

14

W18 = W 1
2 ⊕W 1

4 ⊕W 1
10 ⊕W 1

15

W19 = W 2
0 ⊕W 2

2 ⊕W 1
3 ⊕W 1

5 ⊕W 2
8 ⊕W 1

11 ⊕W 2
13

W20 = W 2
1 ⊕W 2

3 ⊕W 1
4 ⊕W 1

6 ⊕W 2
9 ⊕W 1

12 ⊕W 2
14

W21 = W 2
2 ⊕W 2

4 ⊕W 1
5 ⊕W 1

7 ⊕W 2
10 ⊕W 1

13 ⊕W 2
15

W22 = W 3
0 ⊕W 3

2 ⊕W 2
3 ⊕W 2

5 ⊕ · · · ⊕W 2
11 ⊕W 3

13 ⊕W 1
14

W23 = W 3
1 ⊕W 3

3 ⊕W 2
4 ⊕W 2

6 ⊕ · · · ⊕W 2
12 ⊕W 3

14 ⊕W 1
15

. . .

W79 = W 8
0 ⊕W 22

0 ⊕W 7
1 ⊕ · · · ⊕W 14

15 ⊕W 17
15 ⊕W 18

15

(9)

where W j
i = ROTLj(Wi). Notice that, although Equation 9 increases the total

number of XOR operations, if we compute PBKDF2-HMAC-SHA-1, it requires to

store only five 32-bit words, namely W0, . . . ,W4, because W6, . . . ,W14 are equal to

zero, and W5,W15 are constant value. Therefore, this approach might be exploited

by GPGPU programming.



Chapter 3

Introduction to GPGPU

programming

Created initially for image processing, Graphic Processing Units (GPUs) became in

the last few years a powerful platform for general-purpose parallel computations [28].

The fast-growing video game industry has motivated a rapid advancement of graphics

hardware and architectures, making GPUs faster and cheaper: today is possible to

buy a GPU that, for parallel computations, can outperform a CPU in the same price

range by several order of magnitude [29].

GPUs possess a different architecture than general-purpose CPUs and they are

optimized for parallel computation. A task should present these specific proprieties

to be optimally executed on a GPU:

• The task must be divisible in smaller tasks.

• Each of these smaller tasks should execute the same instructions.

• Each of these smaller tasks should use as little memory as possible.

16
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In this Chapter we give a brief description of the architecture of a GPU, how the

software for this kind of hardware should be developed and how a GPU program

is different from a CPU program. The purpose of this Chapter is to provide the

necessary background for understanding the implementation we have developed from

scratch for our testing activity . We have used OpenCL [30] as the language and

framework for our implementation but the concepts in this chapter can be easily

applied to other GPGPU framework and languages like CUDA [31].

3.1 Introduction to OpenCL

Figure 3: The OpenCL application model

The Open Computation Language (OpenCL) is a framework and programming lan-

guage for programs that runs on heterogeneous platforms with CPUs, GPUs or FP-

GAs [32]. OpenCL, in contrast to other GPGPU frameworks, is an open standard

maintained by Khronos Group [33] and it is supported by almost every GPU produced

in the last 7 years.
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An OpenCL application uses a client-server model, as shown in Figure 3: the

application has a central host split the computation into several processing units and

then it sends them to the Computation Devices (CD). These Computation Devices

possess several Computation Units (CU). The CU executes the processing units, sep-

arated instances of the same GPU application. Often, in practical implementations,

the host is a CPU application that handles how the workload should be executed

on the GPUs connected to the system, making the GPUs the Computation Devices.

OpenCL has APIs in several languages for writing the host application, while the

kernel is written using the OpenCL language.

Kernels are written using in a C99-like programming languages created for making

it easy to write efficient GPU applications. A work item is an instance of a kernel

and it is executed on the Computation Devices. Since these devices can be differ-

ent hardware with different architectures and different Instruction Set Architectures

(ISA), an OpenCL kernel is often compiled just-in-time. This permits to execute the

same kernel on different machines, however it presents problems for the distribution

of the application. In 2015 Khronos Group has developed the Standard Portable In-

termediate Representation (SPIR) [34], a binary intermediate language that can be

executed by any OpenCL-supported Computation Devices.

3.2 Differences between CPU and GPU applica-

tions

A CPU is usually formed by a central Control Unit (CU) and by one or more Arith-

metic Logic Unit (ALU). A CPU execution cycle can be simplified in these operations:

• Fetch the current instructions from the main memory.
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Figure 4: Differences between CPU and GPU architectures

• The CU decode the current instruction, setting the ALUs accordingly.

• The ALUs execute the operation.

The CPU possess a central memory. However the CPU does not access the memory

directly because, for hardware reasons, each memory access is much slower than

the execution of an instruction [35]. If an instruction needs to access the memory, it

means that the CPU should wait for the data present in memory before continuing the

execution, introducing latency during the execution of the instruction. For avoiding

this problem, CPUs uses a hierarchy of caches for trying to reduce at a minimum a

direct access to the central memory.

A GPU is usually formed by two main elements: an on-device memory and multi-

ple streaming multiprocessors (SM) [36]. A streaming multiprocessor includes these

elements:

• An Instruction Decoding Unit for decoding the instructions.
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• A little cache memory, used as constant memory.

• A little, read-only, memory for the kernel’s instructions.

• A bigger, on-chip memory used as local memory.

• Several thread processors (SP). Each of these thread processor contains an ALU

for computations.

• Several Special Function Units (SFU), specialized ALUs that can execute in

hardware several complex arithmetic operations.

Figure 5: Structure of a Streaming Multiprocessor

Figure 5 shows the structure of a SM. For making the development of GPU application

easier several framework and languages were created in the last decade. Taking the

OpenCL model, a GPU application uses a client-sever model: the application possess

a central CPU program to be uses as the host application that asks the execution of a

set of work items to the GPU, the Computation Device. A work item is an instance,

or thread, of a specific GPU program called kernel. The set of work items is then

spitted into several blocks. Often a block has a size of 256 work items, however the
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size of a block depends on the hardware and how well the application can be split into

separated work items. Finally, blocks are spitted into warps: all threads in a warp

execute the same instruction at the same time on different inputs: we will later see

that each thread has its own set of registers. This execution approach takes the name

of Single Instruction Multiple Data (SIMD) execution. Streaming multiprocessors are

able to change the current active warp for reducing the impact of a memory access

on performances.

The GPU can execute almost every instruction a CPU could: GPUs can be con-

sidered general purpose architectures. However there are some important differences.

One difference we can already see is presented by conditional jumps. If only some

threads in a warp must execute a block of instruction, the other threads must be put

on wait, meaning that in that specific moment we do not use all the computation

capabilities of the GPU. This phenomenon is called warp divergence and it must be

considered during the development of GPU applications.

3.3 GPU memory hierarchy

One of the main aspects a programmer must consider during the development of a

GPU application is memory handling. CPU and GPU communicate using the system

bus, meaning that a GPU can access the CPU memory. However the system bus

presents too much latency, meaning that the GPU cannot use the CPU memory in

an efficient way. For this reason, GPUs often provide a separate memory on their

card.

GPU memory use an hierarchy structure for hide as much as possible the latency

introduced by memory accesses. On GPUs a memory access if often really costly: if
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a thread in a warp needs to access memory, all the other threads in the warp must

wait for that data before they can continue the computation.

Figure 6: Memory hierarchy on a GPU

OpenCL presents 3 types of memory: Global Memory, Local Memory and Register

Memory. Figure 6 shows the memory architecture of an OpenCL application.

3.3.1 Global memory

Global memory is the main memory of the GPU. It is often the bigger memory on the

card, in the order of gigabytes, but it is also the slower. The Global memory works

like the main memory for a GPU: each thread can access the global memory. There

are however a couple of differences between the CPU memory and the GPU memory:

for example GPU memory often does not have support for virtual addresses.

Since accessing the CPU memory from the GPU introduces a big latency because
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of the system bus, often the host copy the input for the work items on the GPU main

memory before starting the computation. At the same way, after the computation,

the host must retrieve the results from the GPU memory. This operation can be done

asynchronously if the hardware support DMA access.

A little part of the global memory is called Constant Memory. This memory buffer

is a read-only area accessible by all work items for saving constants that are needed

to the application. Since it is read-only, it can be copied internally to the SM without

coherence problems, making the access to the data in the constant memory faster

than the rest of the global memory.

3.3.2 Local memory

Local memory is a memory buffer internal to the streaming multiprocessor and it is

shared between the work items in the same block. The purpose of this memory is to

permit a faster communication between work items in a block, without requiring them

to access the global memory. Since it is in the streaming multiprocessor, local memory

presents a much lower latency that global memory but the size of this memory buffer

is around the 16 to 32 Kb.

Local memory is often spitted into different hardware banks, memory buffers

handled on different chips. The access to addresses in different banks can be done

in parallel, while the access to addresses in the same bank must be serialized. How

the addresses are separated into the memory banks is hardware-dependent, however

often the following 32-bit words are in a different banks for trying to get as many

accesses in different banks as possible
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3.3.3 Registers

Register memory represents the faster memory on a GPU. The register memory con-

tains the registers used by each work item in execution. Because of their architecture

with thousands of streaming multiprocessors, registers on a GPU are in a buffer of fast

memory. Each work item allocate in this memory the number of registers they require

for the computation of the kernel. If a kernel needs lots of registers, however, presents

a performance problem: the SM can occupy the entire register memory, meaning that

some SM must be kept on slower memories and it increase the possibility of cache

misses during a register access.



Chapter 4

Algorithmic optimizations

PBKDF2 applies a pseudorandom function to generate cryptographically secure keys.

Since in this process different cryptographic algorithms are involved as we have seen

in Chapter 2, the optimization of one of these algorithms usually lead to interesting

performance improvements in the key derivation process. But this is not always true.

Indeed, some optimizations described in this Section affect SHA-1 or HMAC-SHA-1

but have no effect on PBKDF2-HMAC-SHA-1. A crucial role is played by the context

in which the code will be run, namely a GPU or CPU context. In fact, a specific

algorithmic optimization may have no impact on GPU performances, while it has on

CPU ones. Interestingly, however, the opposite is true as well.

Focusing on the state of the art of PBKDF2, HMAC, and SHA-1, in this Chapter

we briefly present the optimizations that provided us any significant improvements.

4.1 PBKDF2 optimizations

[OPT–01] Early exit: The execution time spent for computing a derived key does

not only depend on the iteration count values. Indeed, also the number of fingerprints

25
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Ti required to compute a single iteration affects the total execution time. Assuming

that we require a 256-bit derived key, two SHA-1 fingerprint are necessary — i.e.,

DerKey = T1||T2, with T1 and T2 160-bit length each. Since blocks Ti are independent

of each other, firstly we generate a block T1 and then we compute the second if and

only if T1 is equal to the first part of the 256-bit derived key. If not so, the chosen

password p is certainly wrong. Therefore, the check of first 160 bits of the key is

enough to discard the majority of invalid candidate passwords [37].

4.2 HMAC optimizations

[OPT–02] Block reduction: Since password p is an input parameter and it is not

modified during the computation of PBKDF2, it is possible to precompute the first

message block of a keyed hash function as showed by Figure 7) and reuse such values

in all the subsequent HMAC invocations. Thus, the number of blocks that have to be

computed is reduced from “4∗iteration count” to “2+2∗iteration count”. This simple

optimization saves about 50% of PBKDF2’s CPU intensive operations [23,37,38].

[OPT–03] Input size: A generic HMAC implementation has to address the prob-

lems of the size of password p and message text. If the password length is bigger

than 512 bits, it has to be reduced. Therefore, a hash algorithm is applied, namely

p = SHA−1(p), and then it is padded with enough zeros to reach a 512-bit length [39].

In addition, we have to address also the problem of the message size. If the message

to be authenticated is bigger than 512 bits, it has to be split in several blocks and

then each block managed separately. In PBKDF2, excluding the computation of

U1 (see Figure 7), we have not a generic HMAC implementation but a specific one.
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Figure 7: PBKDF2-HMAC-SHA-1 optimizations

Indeed, we known in advance the computation of the first message block (see [OPT–

02] Merkle-Damgard block reduction), and we have to manage only the second one.

Since the second message block always inputs a 160-bit message, namely SHA-1(M)

or Ui (see Figure 7), we have not to split the message to be authenticated in blocks.

Therefore, this optimization provide us the possibility to avoid length checks and the

chunk splitting operations during the computation of U2,. . . ,Uc, thus reducing the

overhead necessary to compute an HMAC implementation [38].
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4.3 SHA-1 optimizations

[OPT–04] Word expansion phase: Instead of using eighty 32-bit words for the

word expansion phase (see Equation 5), SHA-1 can be implemented using a circular

queue [24] of sixteen words (see Equation 6). This approach reduces the amount of

memory required by the implementation, thus making this optimization a desirable

feature in a GPU context.

A different approach has been introduced in [27], where the authors suggest the

possibility to unfold the SHA-1 message scheduling function (see Equation 9). Al-

though this approach increases the total number of XOR operations to be executed,

it drastically reduce the amount of memory required to perform the SHA-1 message

scheduling function, i.e., only five 32-bit words. Therefore, also this optimization may

have an impact on GPU performances.

In addition, Visconti and Gorla [27] have also shown that Equation 5 can be

replaced with Equation 7. This new approach does not reduce the amount of memory

required to compute the word expansion phase but can be exploited to reduce the

total number of XORs in a CPU context as suggested by [OPT–05].

[OPT–05] Zero-based optimization: Due to a long run of several consecutive

zeros, namely 287 bits, a number of 32-bit word Wt are set to zero. Since zero-based

operations do not provide any contribution, they can be easily omitted. Therefore,

exploiting Equations 7 and 8, we can ovoid 66 out of 192 XOR operations [27].

The same approach can be adopted to reduce the number of constant XORed

twice — i.e., 0x36 and 0x5C — when passwords p are short. We recall that XORing

the same value twice does not provide any contribution and can be omitted [23].
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[OPT–06] Three-round optimization: During the computation of the message di-

gest, SHA-1 operates on several 32-bit words such as constantsKt, registersA,B,C,D,E,

functions ft and Wt too. However, in the first three rounds a number of these words

are known a priori and some operations can be omitted [38]. For example, in the

first round we have to compute the following equation: f0 + E + ROTL(A, 5) +

W0 + K0 (see Figure 2). The content of 32-bit word W0 is unknown but those

of f0, E, the circular shift of A, and K0 are not. Therefore, we can precompute

f0 + E + ROTL(A, 5) + K0 = 0x9FB498B3 and reduce the first round to a single

operation, namely W0 + 0x9FB498B3, thus saving 3 operations out of 4. This ap-

proach can be also applied to second and third round, where the unknown values are

A,W1, and A,B,W2, respectively.



Chapter 5

Implementation optimizations

For our testing activities described in Chapter 6 we have used our implementation of

PBKDF2. This implementation was developed from scratch instead of using off the

shelves tools and libraries like hashcat [40]. We decided to take the effort to implement

PBKDF2 and its cryptographic primitives so that we were able to easily implement

al the optimizations we have presented in Chapter 4 and observe the impact each

optimization have on the acceleration of PBKDF2.

We have developed two versions of PBKDF2 for two different architectures: a

GPU version using OpenCL and a CPU version. We have implemented PBKDF2

on both architectures because of the diversities we have presented in Chapter 3.

Since the purpose of this work is to understand how much impact the optimizations

have on the acceleration of PBKDF2, it is reasonable to expect that some of them

can have a different impact based on the architecture used for the execution of the

algorithm. In this Chapter we present both implementations and the difficulties we

have encountered during their development.

30



CHAPTER 5. IMPLEMENTATION OPTIMIZATIONS 31

5.1 Details of GPU implementation

Using modern GPU hardware it is possible to execute several thousand instances of

PBKDF2 at the same time on a single GPU. Since we want to accelerate PBKDF2,

we have two ways to achieve this goal:

• Reduce the execution time of a single PBKDF2 instance.

• Increase the number of instances we can execute in parallel on the GPU.

Interestingly, these approaches are interconnected: reducing the execution time of

the single PBKDF2 instance can reduce the execution time of the execution warps,

meaning that the GPU can run more warps per second. Also an important factor of

our implementation will be how the kernel handle the several layers of GPU memory

and how this memory is accessed.

As we have seen in Chapter 3, an OpenCL application usually possess an host

application and several kernels. These kernels are executed on the Computation

Devices. In our case the computation devices are GPUs, so for the rest of this

Chapter we will assume that the kernels will be executed on this kind of hardware.

The purpose of our application is to execute PBKDF2 instances on a GPU, so we

need to implement this algorithm using kernels. This does not mean that PBKDF2

must be implemented using a single kernel: as we have seen big kernels uses more

memory and registers. This can reduces the number of concurrent instances that can

be efficiently executed on the device. In our testing activities we have tried several

approaches:

• We have implemented PBKDF2 using a kernel that implements HMAC. Then

PBKDF2 is executed using a queue of these HMAC kernels. We have found



CHAPTER 5. IMPLEMENTATION OPTIMIZATIONS 32

that this approach generates kernels that uses very little memory and registers,

however the overhead of starting and stopping kernels became extremely costly

if the iteration count was big, making this implementation non viable.

• We implemented PBKDF2 using several kernels, each implementing only a cer-

tain number of HMAC iterations. The problem of this approach was finding the

best amount of HMAC iterations that can be executed on the same kernel while

keeping the memory consumption and the overhead of finishing and starting a

new thread as little as possible.

• We implemented PBKDF2 as a single kernel. The resulting kernel used the

most amount of memory and registers but it was the simplest to implement.

Figure 8: PBKDF2 GPU implementation
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In our implementation we used an union of these approaches. Figure 8 shows how

we have implemented PBKDF2. For this implementation we decided to use two GPU

kernels:

• A kernel that executes only the first iteration of HMAC.

• A kernel that executes the remaining i− 1 iterations.

We used this division for hiding the memory transfer time between the host and

the computation device: the biggest part of the input of PBKDF2 is the password

and the salt. However when we use the [OPT–02] these values are only used during

the first iteration. This means that after the execution of the first iteration we can

update the memory buffer containing the passwords and salts without race conditions

with the GPU computation. This can be done with a DMA transfer between the host

and the computation device. Figure 9 shows how the host does this transfer. Thanks

to this solution the device is able to start the execution of the next set of password

candidates immediately, hiding the transfer time of the input between host and device.

5.1.1 OpenCL host implementation

The host application is a CPU program that must handle the execution of the kernels

on our GPUs. This application must:

• Send on the GPU Global memory the input of the kernels.

• Put the kernels instructions in the execution queue of the GPU.

• Recover from the GPU Global memory the output of the computation.
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Figure 9: The OpenCL application model

Since our GPU will execute a queue of kernels that implements PBKDF2, our

input is the set of password candidates and the salt. In our application we consider

that the user provides the set of password candidates in what we call password dictio-

nary. Since the amount of memory on the device is limited it is often impossible to

store the entire dictionary on the GPU memory. The first job of the host application

is Then to split the dictionary into subsets. The dimension of this subset depends on

the amount of the Global Memory the current GPU possess. For simplicity we have

considered the passwords as character arrays of length 64 with padding if necessary.

Even if this means that we consume a little more memory, this is not usually a prob-

lem since HMAC-SHA-1 requires to extend the password to 64 byte [39]: the kernel

still needs to use that much memory for each instance.

For the transfert of the password candidates into the device memory we have used
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a DMA transfer, as we have showed in 9. If our implementation is using [OPT–2],

PBKDF2 only needs to access the password buffer only during the first iteration.

While the GPU executes the other iterations the host application can send, with a

DMA transfer, the next subset of password candidates to the device. Then, when the

GPU ends the execution, it will already have the next subset in memory so that it

can immediately start the next execution.

Figure 10: Host precomputation of the dictonary

One of the first problems we had during the development of our host application

was the endianess: our machine uses an AMD CPU so the words in memory were in

little endian order however HMAC-SHA-1, the PRF used by our implementation of

PBKDF2, uses the network endianess [39]. We had to convert the passwords from

little endian to big endian before starting the execution of our kernels. We could

do the conversion on the host application and then transfert the passwords or we

could transfer the passwords and do the conversion on the GPU before starting the

execution of PBKDF2 using a specific kernel. We decided to do this conversion on

the host application: after some extensive profiling we have noticed that the CPU
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was often in idle waiting for the next transfer so we have decided to use this time

for convert in network endian the next subset of password candidates. Our profiling

also showed that we still had some idle time on the CPU, so we decided to do the

first HMAC operation, the XOR of each byte of the password with the byte 0x36, on

the host application. When the host application transfers the password candidates

subset, these passwords will be already in the correct endianess. Figure 10 shows how

the host application does this precomputation of the password candidates subset.

Our kernels executes PBKDF2 on several passwords, in the hope of finding which

password generates the key we want to break. After the execution of the kernels, we

have on the GPU memory the keys generated from the password candidates subset.

We then need to compare the generated key with the one we want to know the

password: if this key is in the output of the GPU PBKDF2 kernel, we have found

a collision. As for the input, this search can be done on the host or on the GPU

itself. We have decided in this case to do the comparison on the GPU. The host

application puts the desired key on the constant memory of the GPU. The GPU,

after the execution of PBKDF2, executes a little kernel that compare each generated

key with the one in the constant memory: if there is a collision, it sets a flag in a

little memory buffer with some informations for retrieving the input password from the

dictionary. This little buffer is then transferred from the GPU to the host application:

since it is a little memory buffer, its transfer time is often negligible. The host

application then checks the returned memory: if the flag is set, it can then use the

informations in the buffer itself for getting the correct password from the dictionary.

5.1.2 GPU kernel implementation

Our PBKDF2 implementation uses 3 different GPU kernels:
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• A kernel that implements the first iteration of HMAC-SHA-1.

• A kernel that implements the remaining i− 1 iterations of HMAC-SHA-1.

• A kernel for checking the hash collision.

As we have already described, when we are using the [OPT–2] optimization

only the first iteration needs to access the password and the salt values: all the

other iterations will use the precomputated blocks instead of using the password.

The memory buffer containing the password candidates is needed only during the

execution of the first iteration. The host can then update the password memory buffer

with the next subset of password candidates while the second kernel is executed by the

GPU without race conditions problematics, hiding as much as possible the transfer

time of the password candidates from the host to the GPU. After we have adopted

this configuration our implementation saw a great improvement in the number of

computed hashes per second even if we did not actually changed in a significant

manner the number of instruction executed.

PBKDF2 uses HMAC and SHA-1 as cryptographic primitives. We have imple-

mented them from scratch on our GPU. As we have described in Chaper 3, one of

the biggest differences between a CPU and a GPU architecture is in their memory

structure. SHA-1 uses a considerable amount of memory for keeping track of its in-

ternal state: we need at least 85 32-bit words for keeping the state between the 80

rounds. This can be a huge problem in an high performance GPU implementation,

so memory handling was one of the primary things we concentrate ourselves during

the development. In fact, as one can see, [OPT–4] optimization gives us a great

improvement with some minimal code changes since it can reduces to 21 the number

of 32-bit words necessary for keep track of the internal state of SHA-1.
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While [OPT–04] reduces the number of words necessary for the internal state

of SHA-1, [OPT–02] presents the problem that each instance must also keep the

precomputed values from the first iteration. These values are what we call hash-ipad

and hash-opad on Figure 8 and they must be read at each iteration. We experimented

several times on where we should keep these 10 words: if in the registers, the Local

memory or in the Global memory, maybe even transfer them to the Constant memory

inside it. In the end we decided to keep these values in the registers: while it is

true that we are using 10 extra registers we have found that this led to the best

performances overall.

The implementation of PBKDF2 requires the execution of several iterations of

HMAC. While it could be seems logical to implement HMAC ad a single kernel and

then put in the execution queue these kernels to implement PBKDF2 we have found

that this slows down too much the execution because of the overhead for starting and

finishing a kernel. We then use a single kernel that execute a loop of HMAC-SHA-1

execution.

Figure 11 shows an extract of our implementation of HMAC-SHA-1. We have

implemented this primitives by inling the SHA-1 instructions in the loop itself. As

we have seen in Chapter 3 one of the biggest penalties in execution time on a GPU is

presented by conditional jump instructions. In our kernel we are doing a loop, so we

have a conditional jump. A way to mitigate this problem is to use loop unrolling: we

put the code for several iterations of the loop in the loop itself, reducing the number

of conditional jumps required. Often with this techniques it is possible to just avoid

the conditional jump instructions altogether but in our case we need to execute too

many iterations. The main disadvantage of using loop unrolling is that we need to

increase the number of istructions in the compiled kernel, increasing its size. When



CHAPTER 5. IMPLEMENTATION OPTIMIZATIONS 39

Figure 11: HMAC-SHA-1 GPU implementation

we tried to loop unroll all the iterations of PBKDF2 we obtained a kernel so big that

it was not possible to execute on our GPUs. We have found the best performances

by putting 3 iterations on the same loop iteration on our main testing GPU, however

different GPUs can have a different optimal value for loop unrolling.

5.2 Details of CPU implementation

While it is quite known that a GPU implementation of PBKDF2 can be several

times faster than a CPU implementation, we decided to developed one from scratch

anyway. We had several reasons behind our decisions: while we wanted to understand
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which impact our optimizations had on PBKDF2, it is important to remember that

CPU implementations are those used more often by users. Several softwares like

cryptsetup [41] for example uses PBKDF2 for deriving the encryption keys using a

CPU implementation as a benchmark. This is done for understanding the value the

iteration count should have on the current machine, avoiding to use one that can

be computed fast enough for providing brute force resistance. If one can accelerate

a CPU implementation, these benchmark are no longer significant of the amount of

time required to execute an instance of the algorithm.

The CPU implementation was simpler than the GPU implementation: we did not

have to work on a multi architecture, client-server application and, because of the

importance of PBKDF2, it currently exists a lot of documentations and implemen-

tations of this KDF on this kind of architecture. Almost every cryptographic library

like OpenSSL [42] or libgcryt [43] provides an implementation of PBKDF2. Some of

these implementations, like fastpbkdf2 [44] are specifically developed for acceleration

attacks to the algorithm itself. We decided to implement PBKDF2 as a native library

and then to develop a little application that uses this library for out testing activities.

While it is common today to have multi-core CPUs on consumer hardware, our

implementation only use one of them. We took this decision because PBKDF2 cannot

be executed efficiently in a multi-threading environment, especially if we implement

[OPT–1], except for the computation of the Ti terms, which can be done in parallel.

However we have more than one Ti term only if the required key is longer than the

internal PRF output length, which is often enough for a lot of use cases. We decided

it was better to use a single core for each instance of PBKDF2 and, in case, the main

application can execute several instances on different threads.
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Figure 12: PBKDF2 CPU implementation

Figure 12 shows an extract of our CPU implementation of PBKDF2. In this im-

plementation we did not use different kernels or procedures for the implementation

but, thanks to the amount of memory we had at our disposal, we were able to intro-

duce as many values precomputation as possible as showed by Figure 12. While it

was easier to implement compared to the GPU implementation, we still had a couple

of problems to solve. Our CPU application, since it is developed for x86 and x64

architectures, presented the same endianess problem we have discussed before for the

GPU implementation. If on the GPU implementation we were able to use the idle
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time of the host application to convert the password candidates, on the CPU version

we do not have this possibility. In our implementation we opted for precomputed dic-

tionary: before starting the computation the entire dictionary of password candidates

is converted into the network endianess. These converted dictionary can then be used

by different executions of our CPU implementation, trying to mask the conversion

time. This however presents an usability problem, since the dictionary files must be

processed before the actual execution.

As for the GPU implementation, the majority of execution time is spent during

the execution of the SHA-1 procedure. For this reason, we concentrate a lot on how

we should implement this procedure. We wanted something that could achive high

performances but it was also easily modifiable for implementing the optimizations we

have presented in Chapter 4. We opted for a C implementation, giving us the ability

to easily implement our optimizations while having good performances.



Chapter 6

Testing activities

To evaluate the contribution of the optimizations described in Chapter 3, we have:

• implemented from scratch both CPU and GPU version of PBKDF2, following

the optimizations presented in Chapters 4 and 5,

• performed our testing activities, measuring PBKDF2 performances, and finally

• compared our results with well-known implementations — e.g. OpenSSL version

1.1.0e [42], libgcrypt version 1.7.6 [43], hashcat 3.5.0 [40].

We have discussed about the implementation of both CPU and GPU version of

PBKDF2 in Chaper 5. In this Chapter we present our testing activities, both on GPU

and CPU, and the results we have obtained. It is important to notice that during

our testing activities we focused not only on raw performances but on understanding

which impact each optimization had in our implementation of PBKDF2. In order

to show the contribution of the optimizations described in Chapter 4, we implement

four different version of our code:

1. based on [OPT–04];
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2. based on all SHA-1 optimizations ( [OPT–04], [OPT–05], [OPT–06]);

3. based on all HMAC and SHA-1 optimizations ( [OPT–02], . . . , [OPT–06]);

4. full version ( [OPT–01], . . . , [OPT–06]);

All results in this Chapter are based on the same machine, equipped with an AMD FX

8320 8-Core CPU, 8 GB of RAM and running Ubuntu 16.04. For the GPU testing

we have used several different GPUs: we will give the details about the hardware

while we will present the GPU testing activities. Finally, all the tables assume the

following PBKDF2 input parameters:

• iteration count c = 1, 000 (the minimum value suggested in [7]);

• derived key length derkey = 256 bits;

• a random salt s.

6.1 CPU testing

The main difference between a CPU and GPU implementation is that, in the first one,

we have not to transfer a set of candidate passwords from host to device, hence we

have not to split the algorithm in two phases as we did on the GPU implementation.

In addition, the CPU version implements Equations 7 and 8 as [OPT–4] instead of

Equation 6. In this case, the circular queue used to implement the word expansion

phase of the GPU version does not provide any performance improvement. Indeed, a

CPU-based approach has less memory constraints than a GPU-based one. Therefore,

the circular queue is a desirable features only in a GPU context.

Table 1 and Figure 13 shows the data collected by running our implementation,

OpenSSL version 1.1.0e [42], and Libgcrypt ver.1.7.6 [43].
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Figure 13: Number of hashes per second on AMD FX 8230

Library Naive
[OPT–4]

only

All SHA-1

opt.

All HMAC,

SHA-1 opt.
Full version

Our version 0.797 0.814 1.005 1.761 1.791

OpenSSL ver.1.1.0e 0.851

Libgcrypt ver.1.7.6 0.683

Table 1: Number of Kilohashes per second (KH/s) on CPU

[OPT–4] doesn’t present a great contribution to the general performances of

the algorithm. All other SHA-1 optimizations brings about a 20% increase in the

number of computed hashes. During our testing activities we have noticed that this

improvement is primarily caused by [OPT–6], since it reduces the number of CPU

instructions required to compute an instance of SHA-1.

As expected, the most important influential optimization are the HMAC one,

more precisely [OPT–2]. Because of this optimization, the implementation has to

execute a little more than half the expected number of SHA-1 block instances. For
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this reason, some high performance, CPU-based implementations like fastpbkdf2 [44]

already use this optimization.

6.2 GPU testing

For our GPU testing we used the same machine described at the start of this Chapter

equipped with 5 different GPUs: AMD R9 390, AMD HD6870, Nvidia GTX 960,

Nvidia GTX 1060, and Nvidia GT 670. These are consumer-grade GPUs with differ-

ent architectures, memory structures and price ranges. Table 2 provides some details

of these GPU, like their price and the amount of memory they possess.

GPU Release date GPU clock (Mhz) Memory (MB) Price ($)

AMD R9 390 18 June 2015 1050 8192 329

AMD HD6870 22 October 2010 900 1024 179

Nvidia GTX 670 10 May 2012 915 2048 399

Nvidia GTX 960 22 January 2015 935 2048 199

Nvidia GTX 1060 16 July 2016 1500 6144 299

Table 2: Details of our GPUs

We used different GPUs for showing the capabilities these hardware have in different

price ranges. It’s important to notice that, thanks to our OpenCL implementation,

we were able to execute our kernels on both AMD and Nvidia GPUs after some little,

implementation-specific changes: more precisely, we had to change how the memory

pinning is done on the host application for permits to do a DMA transfer of the

password dictionary between the CPU and GPU.
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Testing results on those GPUs are shown in Table 3 and Figure 14. For each

GPU we have executed our implementation for guessing several 6 to 8 character long

passwords. We provide the average number of hashes per second our implementation

was able to perform. All values in these tables are in Kilohashes (1 KH = 1000 keys)

per second (KH/s). Finally, in Table 4 we compare the performance of our code with

a well-known password recovery utility [40].

GPU Naive
[OPT–4]

only

All SHA-1

opt.

All HMAC,

SHA-1 opt.
Full version

AMD R9 390 244.72 359.56 377.73 755.57 1553.34

AMD HD6870 7.32 98.16 99.18 198.45 398.15

Nvidia GTX 670 75.28 84.14 90.06 191.20 393.83

Nvidia GTX 960 180.32 206.41 212.62 504.06 1048.44

Nvidia GTX 1060 324.26 351.64 381.34 1048.40 1678.30

Table 3: Number of Kilohashes per second (KH/s) on different GPUs

GPU Full version hashcat

AMD R9 390 1553.34 1469.6

AMD HD6870 398.15 156.4

Nvidia GTX 670 393.83 410.7

Nvidia GTX 960 1048.44 992.2

Nvidia GTX 1060 1678.30 1710.2

Table 4: Comparison between our implementation and hashcat (KH/s)
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Table 3 reports interesting results. First, if we compare these results with those

presents in Table 1 we can see that the GPU implementation is around 2000 times

faster than the CPU implementation when we consider the number of hashes we can

produce and test. This isn’t something new since it is known that a GPU architecture

is perfect for parallel computations and our problem, the computation and collision

checking of hashes, it is extremely easy to execute in parallel. What it is surprising is

how old and cheap GPUs are able to compete with modern CPUs even in the naive

version. As Table 2 shows us, the AMD HD6870 is the oldest GPU we used for our

testing. It was released in 2010 for a 179$ retail price. Even so, this GPU was able

to compute almost 4 times more hashes than our AMD FX8320 even if we do not

consider any optimization. This shows the amount of performances that GPUs can

provide for the right problem.

An interesting results was the impact on performances of [OPT–4] on our GPU

implementation. This optimization does not reduce the number of operations to

execute for the computation: instead it can actually increase them since it means

that we cannot implement some of the optimizations presented in [27] that we have

discussed in Chapter 2. However this optimization alone provides an increment of

around 5% in the number of hashes our implementation can compute. Of particular

interesting is the case of the AMD HD6870 with this optimization: because of the

small amount of memory equipped on this GPU we were able to have an increment

of around 10 times in the number of computed hashes. This is probably because our

naive implementation wastes too many registers for the word expansion, causing too

many accesses to the slower memory. The other SHA-1 optimizations provided, while

not as much as [OPT–4], a nice increase in performances, especially [OPT–06]

because it reduces the number of instruction executed for each iteration of PBKDF2.
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Figure 14: Number of hashes per second on GPU

The major improvement, as expected, was given by [OPT–2]. This optimization

almost reduces in half the number of SHA-1 blocks the implementation must execute

for compute the final key. During development we had some doubts about the ef-

fectiveness of this optimization: for using [OPT–2], each instance of PBKDF2 must

keep the precomputed values, resulting in extra memory consumption. However, as

we have described in Chapter 5, we were able to find the best compromise for reducing

the memory latency of this version, resulting in a great improvement in the number

of computed hashes per second.

Finally, Table 4 presents a comparison between our implementation and hashcat,

an open source tool for password cracking. It’s worth noting that hashcat is a general-

purpose password guesser: it implements several KDF and hash algorithms and it is
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often use for password recovery. During our testing activities we have noticed that

our implementation is a little faster than hashcat on some GPUs. On our main

testing card, the AMD R9 390, our implementation was able to compute around

5% more hashes than hashcat in the same amount of time. We did not explore

in details the implementation of PBKDF2-HMAC-SHA-1 provided by hashcat but

we can probably trace back this increase in the number of computed hashed to our

transferring protocol and the optimizations our implementation is using. It is also

worth notice that hashcat probably possess some overheads caused by the many

features offered by this application that our implementation does not provide like

password masking.



Chapter 7

Conclusions and future works

User-chosen passwords are widely used to protect sensitive information and to gain

access to specific resources. They should be strong enough to prevent dictionary and

brute-force attacks but usually they are short and lack enough entropy. They cannot

be directly used as cryptographic keys. A possible solution to these issues is to adopt

a password-based Key Derivation Functions. Currently the Password Based Key

Derivation Function v2 [3], defined by RSA Laboratories, is the de-facto standard for

KDF. In January 2017 RSA Laboratories updated the PCKS-5 standard [4], which

is the current standard for PBKDF2. NIST currently has a standard draft for the

storage of passwords and other kind of secrets using PBKDF2 as a response for the

numerous password breaches of the last few years [5]. iOS currently uses PBKDF2 for

the implementation of the full disk encryption capabilities [9] with an iteration count

specific for each device. Android, since version 4.4, uses scrypt instead of PBKDF2

for their full disk encryption. Also, several full disk encryption software like LUKS

and FileVault [11] uses a KDF for managing their encryption keys.

In these thesis we have presented a PBKDF2 implementation we have developed

51
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from scratch. We had three main objectives for our implementation:

• Understand which impact several algorithmic optimizations to the internal cryp-

tographic primitives have on the performances of PBKDF2

• Understand the differences between CPUs and GPUs architectures in the con-

text of accelerating KDFs.

• Obtain the fastest possible implementation for PBKDF2.

Our PBKDF2 implementation is able to attack in a few days a 6-7 character long

password using a cheap, consumer grade GPU. This means that, even with PBKDF2,

the user should use long and complex passwords for avoiding brute force attacks,

diminishing the usability gains that the usage of this KDF should give, especially to

non technical users. We obtained these results thanks to the several optimization

techniques to the main algorithm and its internal cryptographic primitives. We have

showed that, in a counterintuitive way, some optimizations brings a great impact only

on one architecture and a very modest one on another one: for example, [OPT–04]

provides a big advantage on the GPU implementation, while it is almost insignificant

to the CPU one because of the different memory hierarchy on this architecture.

Even if PBKDF2 received a revision in the January 2017, the security community

agrees that PBKDF2 requires an iteration count so big and passwords so long to be

considered secure that it can be difficult to use by human users. The problem arises

not from a weakness to the algorithm itself or its internal cryptographic primitives

but from the idea of using CPU intensive operations for slowing down attackers:

the presence of cheap parallel architectures like GPUs and ASICs permits to reduce

the cost and the time required for there CPU operations, making the algorithm less

resistant to dictionary-based attacks.
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As a response to these new architectures, the cryptography field saw a renovated

interest in the development of new Key Derivation Functions. In 2009 Colin Percival

proposed scrypt [45], a KDF based on a new concept: instead of using CPU-intensive

operations as a countermeasure against brute force attacks, scrypt is based on the

concept of memory hard operations. In the original definition, a memory hard func-

tion is a function that use S(n) memory locations and T (n) instructions on a RAM

machine, where:

S(n) ∈ Ω(T (n)(1−ϵ))

A memory hard algorithm is an algorithm which asymptotically uses at least as

many memory locations as instructions. We can see it as an algorithm that uses

almost every memory locations it can. The reason behind the development of this

kind of functions is because memory is often the most expensive thing to replicate

in hardware for general purpose computations. If we took the example of a GPU or

an FPGA, it is easy to see that the memory space and speed are a bigger constraint

than the number of operations executed per second.

In 2013 the Password Hashing Competition (PHC) [46] was announced. The PHC

was an open competition for selecting new password-based hashing and key derivation

functions. In 2015 argon2 [47] was announced the winner of the competition, with

special mention of the other four finalists: Catena [48], Lyra2 [49], yescrypt [50],

Makwa [51] because of their qualities. All these algorithms use sophisticated ideas for

preventing brute force attacks by GPU and parallel hardware in general. Argon2, the

winner of the competition, is a memory hard function like scrypt but it also presents

the possibility to tweak several parameters for better adapting the algorithm to the

usage context. MARKVA, instead, uses computations on big integers for making

an hardware implementation too much expensive because of the elevated number of
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transistor needed. Currently there is not a complete and in-depth analysis of the new

algorithms and their brute force resistance algorithms. A possible direction for future

works based on this thesis could be the cryptanalysis of these new Key Derivation

Functions and their brute force resistance algorithms.
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